Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Lab Med ; 42(1): 97-109, 2022 03.
Article in English | MEDLINE | ID: covidwho-2130422

ABSTRACT

Humoral immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during acute infection and convalescence has been widely studied since March 2020. In this review, the authors summarize literature on humoral responses to SARS-CoV-2 antigens with a focus on spike, nucleocapsid, and the receptor-binding domain as targets of antibody responses. They highlight serologic studies during acute SARS-CoV-2 infection and discuss the clinical relevance of antibody levels in COVID-19 progression. Antibody responses in pediatric COVID-19 patients are also reviewed. Finally, the authors discuss antibody responses during convalescence and their role in protection from SARS-CoV-2 reinfection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , Child , Humans , Immunity, Humoral
2.
Angew Chem Int Ed Engl ; 60(49): 25966-25972, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1427057

ABSTRACT

Coronavirus disease 2019 (COVID-19) manifests with high clinical variability and warrants sensitive and specific assays to analyze immune responses in infected and vaccinated individuals. Using Single Molecule Arrays (Simoa), we developed an assay to assess antibody neutralization with high sensitivity and multiplexing capabilities based on antibody-mediated blockage of the ACE2-spike interaction. The assay does not require live viruses or cells and can be performed in a biosafety level 2 laboratory within two hours. We used this assay to assess neutralization and antibody levels in patients who died of COVID-19 and patients hospitalized for a short period of time and show that neutralization and antibody levels increase over time. We also adapted the assay for SARS-CoV-2 variants and measured neutralization capacity in pre-pandemic healthy, COVID-19 infected, and vaccinated individuals. This assay is highly adaptable for clinical applications, such as vaccine development and epidemiological studies.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Antigen-Antibody Reactions , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
3.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1311202

ABSTRACT

BACKGROUNDWeeks after SARS-CoV-2 infection or exposure, some children develop a severe, life-threatening illness called multisystem inflammatory syndrome in children (MIS-C). Gastrointestinal (GI) symptoms are common in patients with MIS-C, and a severe hyperinflammatory response ensues with potential for cardiac complications. The cause of MIS-C has not been identified to date.METHODSHere, we analyzed biospecimens from 100 children: 19 with MIS-C, 26 with acute COVID-19, and 55 controls. Stools were assessed for SARS-CoV-2 by reverse transcription PCR (RT-PCR), and plasma was examined for markers of breakdown of mucosal barrier integrity, including zonulin. Ultrasensitive antigen detection was used to probe for SARS-CoV-2 antigenemia in plasma, and immune responses were characterized. As a proof of concept, we treated a patient with MIS-C with larazotide, a zonulin antagonist, and monitored the effect on antigenemia and the patient's clinical response.RESULTSWe showed that in children with MIS-C, a prolonged presence of SARS-CoV-2 in the GI tract led to the release of zonulin, a biomarker of intestinal permeability, with subsequent trafficking of SARS-CoV-2 antigens into the bloodstream, leading to hyperinflammation. The patient with MIS-C treated with larazotide had a coinciding decrease in plasma SARS-CoV-2 spike antigen levels and inflammatory markers and a resultant clinical improvement above that achieved with currently available treatments.CONCLUSIONThese mechanistic data on MIS-C pathogenesis provide insight into targets for diagnosing, treating, and preventing MIS-C, which are urgently needed for this increasingly common severe COVID-19-related disease in children.


Subject(s)
COVID-19/etiology , COVID-19/physiopathology , Haptoglobins/physiology , Intestinal Mucosa/physiopathology , Protein Precursors/physiology , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/physiopathology , Adolescent , Antigens, Viral/blood , Biomarkers/blood , COVID-19/virology , Case-Control Studies , Child , Child, Preschool , Female , Haptoglobins/antagonists & inhibitors , Humans , Infant , Infant, Newborn , Intestinal Mucosa/drug effects , Intestinal Mucosa/virology , Male , Oligopeptides/pharmacology , Permeability/drug effects , Proof of Concept Study , Protein Precursors/antagonists & inhibitors , Protein Precursors/blood , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , Systemic Inflammatory Response Syndrome/virology , Young Adult
4.
Anal Chem ; 93(13): 5365-5370, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1147379

ABSTRACT

Tests for COVID-19 generally measure SARS-CoV-2 viral RNA from nasal swabs or antibodies against the virus from blood. It has been shown, however, that both viral particles and antibodies against those particles are present in saliva, which is more accessible than both swabs and blood. We present methods for highly sensitive measurements of both viral RNA and antibodies from the same saliva sample. We developed an efficient saliva RNA extraction method and combined it with an ultrasensitive antibody test based on single molecule array (Simoa) technology. We apply our test to the saliva of patients who presented to the hospital with COVID-19 symptoms, some of whom tested positive with a conventional RT-qPCR nasopharyngeal swab test. We demonstrate that combining viral RNA detection by RT-qPCR with antibody detection by Simoa identifies more patients as infected than either method alone. Our results demonstrate the utility of combining viral RNA and antibody testing from saliva, a single easily accessible biofluid.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , SARS-CoV-2/genetics , Saliva/immunology , COVID-19/virology , Female , Humans , Limit of Detection , Male , Real-Time Polymerase Chain Reaction , Reproducibility of Results , SARS-CoV-2/immunology
5.
Nat Biomed Eng ; 4(12): 1180-1187, 2020 12.
Article in English | MEDLINE | ID: covidwho-780007

ABSTRACT

Sensitive assays are essential for the accurate identification of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we report a multiplexed assay for the fluorescence-based detection of seroconversion in infected individuals from less than 1 µl of blood, and as early as the day of the first positive nucleic acid test after symptom onset. The assay uses dye-encoded antigen-coated beads to quantify the levels of immunoglobulin G (IgG), IgM and IgA antibodies against four SARS-CoV-2 antigens. A logistic regression model trained using samples collected during the pandemic and samples collected from healthy individuals and patients with respiratory infections before the first outbreak of coronavirus disease 2019 (COVID-19) was 99% accurate in the detection of seroconversion in a blinded validation cohort of samples collected before the pandemic and from patients with COVID-19 five or more days after a positive nasopharyngeal test by PCR with reverse transcription. The high-throughput serological profiling of patients with COVID-19 allows for the interrogation of interactions between antibody isotypes and viral proteins, and should help us to understand the heterogeneity of clinical presentations.


Subject(s)
COVID-19/immunology , Immunoassay/methods , Seroconversion/physiology , Aged , Aged, 80 and over , Antibodies/immunology , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/immunology , Sensitivity and Specificity
6.
Clin Chem ; 66(12): 1562-1572, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-748361

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 21 million people worldwide since August 16, 2020. Compared to PCR and serology tests, SARS-CoV-2 antigen assays are underdeveloped, despite their potential to identify active infection and monitor disease progression. METHODS: We used Single Molecule Array (Simoa) assays to quantitatively detect SARS-CoV-2 spike, S1 subunit, and nucleocapsid antigens in the plasma of patients with coronavirus disease (COVID-19). We studied plasma from 64 patients who were COVID-19 positive, 17 who were COVID-19 negative, and 34 prepandemic patients. Combined with Simoa anti-SARS-CoV-2 serological assays, we quantified changes in 31 SARS-CoV-2 biomarkers in 272 longitudinal plasma samples obtained for 39 patients with COVID-19. Data were analyzed by hierarchical clustering and were compared to longitudinal RT-PCR test results and clinical outcomes. RESULTS: SARS-CoV-2 S1 and N antigens were detectable in 41 out of 64 COVID-19 positive patients. In these patients, full antigen clearance in plasma was observed a mean ± 95% CI of 5 ± 1 days after seroconversion and nasopharyngeal RT-PCR tests reported positive results for 15 ± 5 days after viral-antigen clearance. Correlation between patients with high concentrations of S1 antigen and ICU admission (77%) and time to intubation (within 1 day) was statistically significant. CONCLUSIONS: The reported SARS-CoV-2 Simoa antigen assay is the first to detect viral antigens in the plasma of patients who were COVID-19 positive to date. These data show that SARS-CoV-2 viral antigens in the blood are associated with disease progression, such as respiratory failure, in COVID-19 cases with severe disease.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/blood , COVID-19/diagnosis , Disease Progression , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19 Serological Testing , Coronavirus Nucleocapsid Proteins/blood , Female , Hospitalization , Humans , Intensive Care Units , Intubation , Limit of Detection , Male , Middle Aged , Phosphoproteins/blood , Prognosis , Protein Subunits/blood , Spike Glycoprotein, Coronavirus/blood
SELECTION OF CITATIONS
SEARCH DETAIL